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Abstract-A new approach based on variable density in conjunction with shallow shell theory is
proposed to analyse rotating shallow shell of variable thickness. Coupled non-linear ordinary
differential equations governing shallow shells of variable thickness are first derived before applying
the variable density approach. Results obtained from the new approach compare well with FEM
calculation for a wide range of profiles considered in this paper.

NOTATION

E Young's modulus
y Poisson's ratio
a radius of shallow shell
r, maximum radial distance from axis of rotation
r radial distance from axis of rotation
w angular velocity in radian S-I

p load intensity in normal direction = pw'hr'/a2

p, load intensity in meridional direction ~ pw2hr(l- (r 2/Za'»
n body force potential = - JPr dr
F stress function
A W/dr 2)+(I/r) (d/dr) Laplacian
I characteristic length = j;h/..)"IZc-(-I-_-y-=-')
x dimensionless quantity = r/l
D Eh 3/12(1-y')
e, radial strain
eo tangential strain
[, horizontal displacement
v displacement in meridional direction
Nt membrane force in radial direction
No membrane force in tangential direction
(T, constant stress
h thickness of the rotating shell h' = dh/dr, h" = d 2h/dr 2

w normal deflection w' = dw/dr, w" = d 2w/dr 2

p mass density at radius r
M, bending moment per unit length in radial direction
M o bending moment per unit length in tangential direction
Q, shearing force in radial direction
Qv vertical shearing force.

INTRODUCTION

Shallow rotating shells are expected to play a major role in future space missions and
communication technology when large spinning disks and antennas are deployed to provide
for propulsion by solar energy, transmit data, or perform other maneuvers. Regarding
applications on ground, increasing power and speed of rotating machinery demand faster
techniques of theoretical stress analysis to achieve optimal designs before FEM implemen­
tation on prototypes. It is in this context that variable thickness shells promise unexplored
avenues in engineering design. It is well known that the analysis of a rotating shallow shell
becomes very complicated when its thickness varies. The corresponding problem ofrotating
disks of variable thickness has been extensively investigated culminating in the design and
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development ofhigh speed turbine and compressor disks. The idea behind variable thickness
disks is in evolving a disk of constant strength in which inplane stresses remain fixed
throughout the disk. Accordingly, as far back as 1927, Stodola (1927) suggested a hyperbolic
profile to achieve constant strength. Further development of this concept followed on the
lines of Donath (1912), Hearle (1918) and Grammel (1936). A general solution to the
problem of a disk with a polynomial variation in its thickness is treated widely in the
literature.

The problem of a rotating shallow shell with variable thickness differs considerably
from that of a rotating disk due to the bending action. Shell theories have been successfully
developed to tackle several structural problems to resist mechanical, thermal, gravitation
and centrifugal loads for constant wall thickness (Fliigge, 1973; Lin and Wan, 1985).
Spherical domes and cylindrical tanks of variable thickness were also examined to optimize
stress levels and reduce weight. The general theory of variable thickness shells as well as an
approximation for thin shells is extensively discussed in Flugge (1973). An exact solution
for the general case of variable thickness shells is formidable. On the other hand, numerical
solutions mask the role of parameters in engineering design. This paper presents a viable
solution for the problem of a rotating shallow shell with variable thickness by assuming
variable density. Results are presented for radial and tangential bending moment and
membrane force for different cases of thickness variation. Results are also compared with
FEM calculation performed on the variable thickness shell to examine the accuracy of the
present approach.

VARIABLE THICKNESS FORMULATION

The actual shallow shell of variable thickness is shown in Fig. l(a). For the sake of
completeness we derive the governing equations for a variable thickness shell before taking
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Fig. 1. (a) Shallow disk with variable thickness. (b) Force at a distance x due to gravity loading.
Fx '" f~pgh(z)dz. (c) Force at a distance x due to rotating bar. Fx = JOpw 2h(z)(x-z) dz. (d) Shear
force Vx and bending moment M x due to gravity loading at a distance x, Vx '" f~pgh(z) dzMx '"

J~pgh(z)(x-z)dz. (e) Shallow disk with uniform thickness.
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Fig. 1. Continued.
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up the case of variable density approach. We follow the general procedure outlined in
Flugge (1973), and Timoshenko and Woinowosky-Krieger (1989).

The differential equations of equilibrium are

d(rNr) r
-d- -Ne- -Qr+rPr = 0,

r a

d(rQr) r
-d- + -(Nr+Ne)+rp = 0,

r a

The strains are:

The bending moments are:

(
dZW v dW)

M =-D(X+vXe)=-D -+--
r r dr z r dr '

(
I dw dZW)

Me = -D(Xe+vXr) = -D r dr +V drz .

(1)

(2)

(3)

(4)

(5)

Assumingpr = -dO/dr, 0 representing a radial body force potential, the force result­
ants per unit length are:

1 dF
Nr =--d +0,

r r

(6)

Using (4) the compatibility equation becomes

(7)

Combining (4) and (7) we arrive at the following fundamental equation for F and w:

IJ.IJ.F+ Eh IJ.W _ ~ [2F'" + (2 - v) F" _ F'J _h" (F" _~F') + 2 (h')2 (F" - ~F')
a h r r2 h r h r

h' [ OJ h" (h')2= -(I-v)IJ.O+-,; 2(I-v)0'+(I-v)-;:- +7l(1-v)0-2 -,; (l-v)O. (8)

The second fundamental relation between F and W is obtained by substituting Qr from
(3) in (2):
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Using (5) and (6) in combination with (9) gives

1 3h
l

[ (2+v) WI] 3h" ( V)AAw--AF+- 2w"'+--w"-- +- w"+-w'aD h , ,2 h ,

(h')2 (" V ') 20 P+6 ~ w +-w =-+-.
h , aD D

853

(9)

(10)

VARIABLE DENSITY APPROACH

The solution of simultaneous equations (8) and (10) is formidable. Shells of variable
thickness seldom admit exact analysis although plates ofvariable thickness admit some exact
theory within the context of small deflection plate theory. Timoshenko and Woinowosky­
Krieger (1989) have presented a large number of detailed solutions to many variable
thickness plate problems, and it is not the intention here to duplicate the work but rather
to present a different approach to tackle the rotating shallow shell problem. With regard
to shells of variable thickness, Fliigge (1973) has discussed the design of constant strength
dome under its own weight. Centrifugal loading represents another example of body force
problems. Material density enters an important factor in problems dominated by body
forces. With particular reference to beams, plates and shells of variable thickness quite
often it is found that force, moment resultants depend on the product of density and
thickness. This is illustrated with a few examples for the case of bar or a beam (Figs 1(b)­
(d)). In the above problems we can treat the product of density and thickness as a single
variable to the extent ofcalculating force and moment resultants. The purpose of this paper
is to examine the extension of this concept to two-dimensional structures such as plates and
shells. However, it should be borne in mind that the final calculation of stresses requires
the actual thickness at a particular section. Further, the present approach oflumping density
and thickness in a single variable may lead to discrepancies in displacements as will be
shown in this paper.

With the above prelude we treat the problem of a rotating shell of variable thickness
as a shell of constant thickness but variable density, as shown in Fig. 1(a), is replaced by a
shell of variable density (Fig. 1(e)) such that the total mass of the shell is conserved. The
equivalent shell of variable density also ensures the same mass variation with radius and
hence the same moment of inertia. The thickness variation is assumed to follow an expon­
ential profile h = hoe- kr2

• It may be recalled that this profile gives a rotating disk ofconstant
strength; the constant k = pw 2j2(Jc involves disk density, speed and stress level. It is
interesting to note here that this profile also approximates a shallow dome of constant
strength discussed in Fliigge (1973) where k = - pgj2a(Jc' However, in the case of constant
strength dome, the shell thickness increases with, to give a constant compressive membrane
stress (Jc; thickness decreases in the case of a rotating shallow shell to achieve a uniform
tensile stress (Jc induced by the centrifugal action.

Variable density approach simplifies the problem enormously by assuming constant
thickness. Since h' = h" = 0, (8) and (10) reduce to:

Eh
AAF+ -Aw = -(I-v)AO,

a

1 P 20
AAw--AF=-+-.

Da D Da

(11)

(12)

Integration of simultaneous equations (11) and (12) can be carried out by multiplying eqn
(11) by a factor -A and adding the result to eqn (12). This yields
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AA(w-),F)-)'(Eh/a)A(w+F/).hDE) = ),(1-v)AQ+ ~ + ~~. (13)

HOMOGENEOUS SOLUTION (p = n = 0)

Stipulating), = -1/),hDE yields

where t/J = w-)'F and), = (i)/(Eh Z)JI2(1-v Z
). The solution for the above equation is

t/J = t/JI +t/Jz, where

t/Jz = A3[Ber (x) +iBei (x)] +A 4 [Ker (x)+iKei (x»).

(14)

(IS)

The functions Ber, Bei, Ker and Kei are Bessel's functions for imaginary arguments
(McLachlan 1955).

In equations (14) and (IS), letting A j = aj+ibj where a;, bj are real constants to be
determined, and comparing real and imaginary parts, we get by recalling t/J = w - )'F:

w = al +azlogx+a3 Ber (x) -b3Bei (x) +a4 Ker (x) -b4Kei (x), (16)

Ofthe eight constants appearing above, only aj, a3 and b3control the stress distribution
in a solid rotating shell. Since w, N r are finite at r = 0, az = a4 = bz = b4 = O. Also b l can
be omitted as it will not produce any stress.

PARTICULAR SOLUTION

In the case Q '# 0, p '# 0 solution of eqn (13) will have a particular integral in addition
to a complementary solution. Substituting P = Po e-kr2

, Q can be approximated as:

(18)

To obtain the particular solution, we assume

(19)

(20)

where QI> ... , Q5 and RI> '" ,Rs are real constants. Substituting the above particular
solution into eqn (13), comparing real and imaginary parts, we get the following relations
connecting Qj and R j

z a
QI = (64R z+2pw h(1-v» 4Eh'

Qz = (576R 3 - Pw
Z
h(4k+ :z)(1-V») 16~h'
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( 2(2
3k
))aQ3 = 2304R4+pw h 3k + aZ (I-v) 36Eh'

Q4 = (6400RS-2PWZh(1-V)~:)64~h'

Qs = 0,

R 3 = (poWZh (2~~ + 4a13D) _2304Q4)~:~4,

(
2k

2 K )Eh1
4

R 4 = - Pow
2
h 3aD + 603D 64a'

pow2Eh2re
R s = 1600a4D .

COMPLETE SOLUTION

This is obtained by adding eqns (19) and (20) to (16) and (17), respectively,

855

M r = -D t; [Her" (x) + ~Ber' (x)]- ~; [Bei" (x) + ~Bei' (X)] +2QI(I +v)

+4Qz(3+v)r 2+6Q3(5+ v)r4+8Q4(7+v)r 6 + lOQs(9+v)r 8
}.

Applying boundary condition Mr = 0, Nr = 0 at r = rc or x = Xc detennines a., a3>
and b3 :

[:

1 vBei' (xc)/xc

Ber" (xc) + - Ber' (xc)
Xc

= -

SAS 31:5-6

o

:[2RI+4R2r~+6R3r~+8~r~+IORsr~-n] . (21)

2QI(I +v)+4Qz(3+v)r~+6Q3(5+v)r~+8Q4(7+v)r~+ 10Qs(9+v)r~
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Table I.

Tip thickness
(mm)

I
2
3
4
5
6

0.0
2.634
5.5786
8.9169

12.771
17.329

10
9
8
7
6
5

RESULTS

Results of the present theory are tested on a representative rotating shallow shell made of
steel (specific gravity = 7.85). Rotation, curvature, tip radius and shell depth are held
constant at 17,000 rpm, 1000 mm, 200 mm and 15.38 mm, respectively. The tip thickness
is varied from 10 mm (constant thickness case) to 5 mm by changing the value of k listed
in Tablel. As mentioned earlier, the profile chosen for the study gives a constant strength
disk in the absence of curvature of approximately G'c = 80 kg mm-2 (784 Mpa). This stress
level corresponds to a membrane force of 800 kg mm-I for a shell thickness of 10 mm.
Other data relating to dimensions and speed are based on existing designs ofprototypes and
photoelastic models. FEM calculations were performed using a general purpose commercial
software. Eight noded axisymmetric solid elements were used to examine the rotating shell
of variable thickness. For the case of uniform shell thickness, FEM results matched well
with exact theory validating the overall FEM procedure followed in this investigation.

For the first case of constant shell thickness, the normal deflection w, radial and
tangential membrane force and bending moment are displayed in Figs 2(a-e). The maximum
tip displacement of 5.53 mm according to theory compares well with FEM value of
5.74 mm. However, the stresses agree even better to within 2%. It is also worth noting that
the tangential membrane force is well within the limit of 800 kg mm -I assigned for the
uniform strength disk Fig. 2(b). Also shown in this figure is the stress variation in a constant
thickness disk. In this case, both radial and hoop stresses decrease towards the tip. In the
rotating shallow shell, the hoop stress increases with radius for the dimensions selected in
this study.

To demonstrate the variable density approach, consider the results shown in Figs 3(a­
c) for the case of tip thickness 9 mm. Tip displacement according to variable density
approach is 4.91 mm whereas FEM gives 5.57 mm as shown in Fig. 3(a). In spite of this
discrepancy, variable density approach predicts Nr and No, Mr and Mo quite well. This
feature continues for all the cases considered here as shown in Figs 3-7. This reveals the
usefulness of variable density approach for stress analysis rather than displacements. In
general the error does not exceed about 10% for membrane force calculation and 15% for
bending moment calculation in the extreme case of thickness variation (case 6). The error
magnitude is expected to increase with decreasing tip thickness, and further research is
necessary to modify the density variation function to improve the results.

It is interesting to examine the extreme case 6 further. Although the tip thickness has
reduced to 5 mm, the maximum tangential membrane force No reaches a value of 400 kg
mm-1, or a stress level of 80 kg mm ~2. Similarly there is a reduction in the value of M r and
Mo. There is no significant change in the radial membrane force distribution see Figs 2(b)­
7(b). There is a similar increase in tangential bending stress at the tip. The net effect of
varying the thickness appears to render the stresses more uniform than in the case of
constant thickness shell. The present approach can therefore be employed in optimizing the
shape of a rotating disk with small initial curvature.

CONCLUSION

Exact analysis of variable thickness shells is quite complicated. Variable density
approach appears to provide a rapid solution to the problem of rotating shallow shells of
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variable thickness. Particularly with regard to stress analysis, the present methodology can
aid in optimizing the shape of rotating discs with initial curvature. It is possible to extract
the individual contributions of membrane and bending action to the stresses. Further
research is necessary to optimize the variable density function to mimic the effect ofvariable
thickness to improve the results particularly with regard to the displacements. The variable
density technique can be easily extended to other profiles than those considered in this
paper.
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